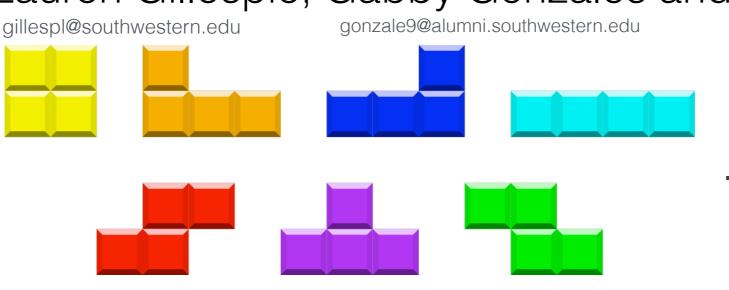
Comparing Direct and Indirect Encodings Using Both Raw and Hand-Designed Features in Tetris

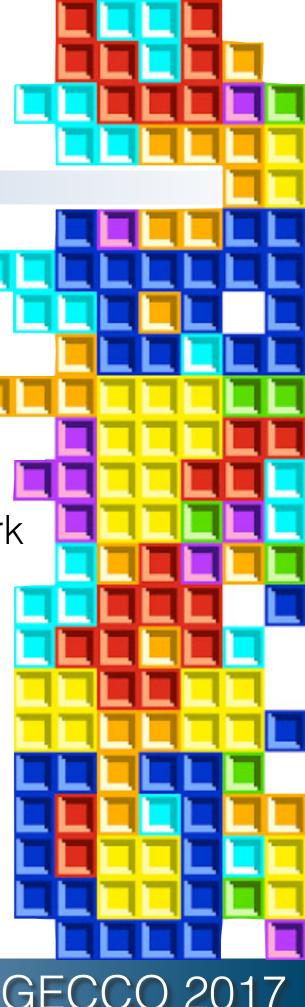
By Lauren Gillespie, Gabby Gonzales and Jacob Schrum

Southwestern University



Introduction

- Challenge: Use less domain-specific knowledge
 - Important for general agents
 - Accomplished using raw inputs
 - Need to be able to process with a neural network
- Why challenging?
 - Complex domains = Large input space
 - Large input space = Large neural networks

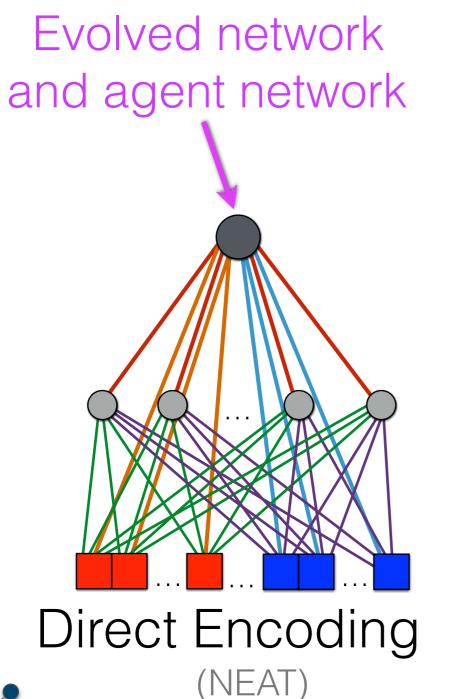


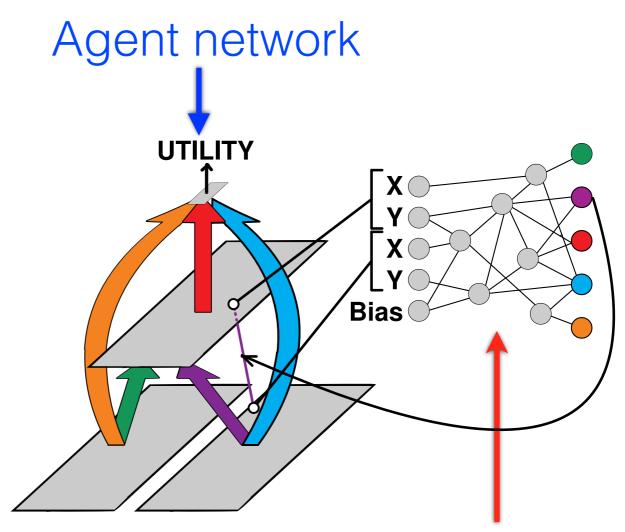
Addressing Challenges

- Deep Learning applies large NN to hard tasks[†]
- HyperNEAT also capable of handling large NNs
 - Indirect encoding, good with geometric inputs[‡]
 - Compare to direct encoding, NEAT
 - See if indirect encoding advantageous
 - Also compare with hand-designed features

† Mnih et al. 2013. Playing Atari with Deep Reinforcement Learning.‡Hausknecht et al. 2012. HyperNEAT-GGP: A HyperNEAT-based Atari General Game Player.

Direct Vs. Indirect Encoding



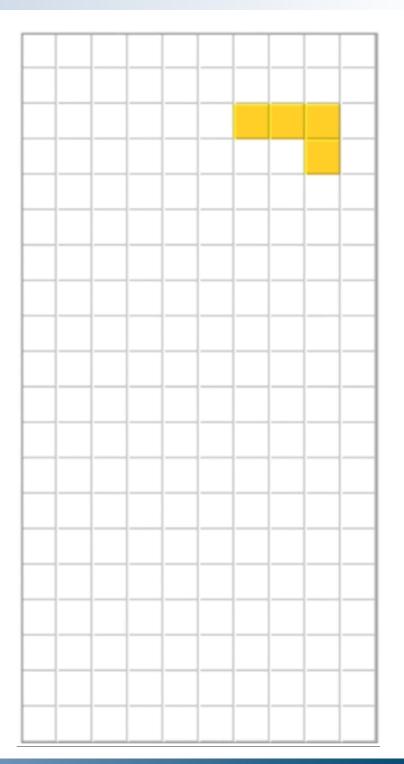


Evolved network Indirect Encoding (HyperNEAT)

Tetris Domain

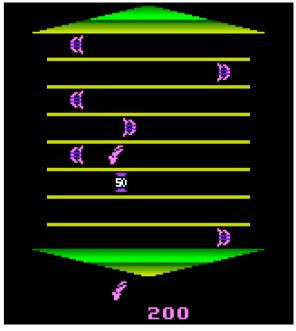
- Consists of 10 x 20 game board
- Orient tetrominoes to clear lines
- Clearing multiple lines = more points
- NP-Complete domain⁺
- One piece controller
 - Agent has knowledge of current piece only

Breukelaar et al. 2004. Tetris is hard, even to approximate.



Previous Work

- Tetris Domain
 - All use hand-designed features
 - Reinforcement Learning:
 - Temporal difference learning: Bertsekas et al. 1996, Genesereth & Björnsson 2013
 - Policy search: Szitza & Lörincz 2006
 - * Approximate Dynamic Programming: Gabillon et al. 2013
 - Evolutionary Computation:
 - Simple EA with linear function approximator: Böhm et al. 2004
 - Covariance Matrix Adaptation Evolution Strategy: Boumaza 2009
- Raw Visual Inputs
 - Neuroevolution: Gauci & Stanley 2008, Verbancsics & Stanley 2010
 - General video game playing in Atari: Hausknecht et al. 2012, Mnih et al. 2013



Asterix game from Atari 2600 Suite

C() 2()

Hand-Designed Features

- Most common input scheme for training ANNs⁺
- Hand-picked information of game state as input
- Pros:

 Network doesn't deal with excess info
 - Smaller input space, easier to learn
- Cons: Very domain-specific, not versatile
 - + Human expertise needed
- Useful features not always apparent

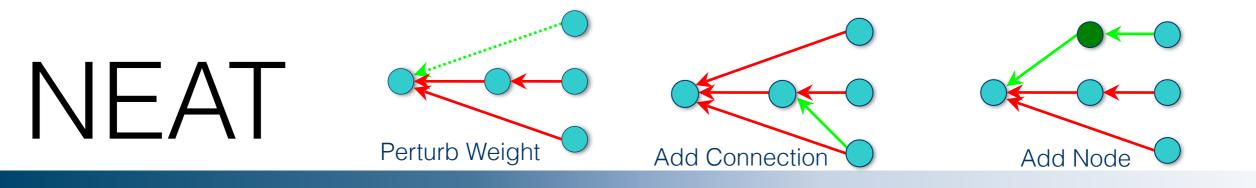
† Schrum & Miikkulainen. 2016. Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.

Raw Features

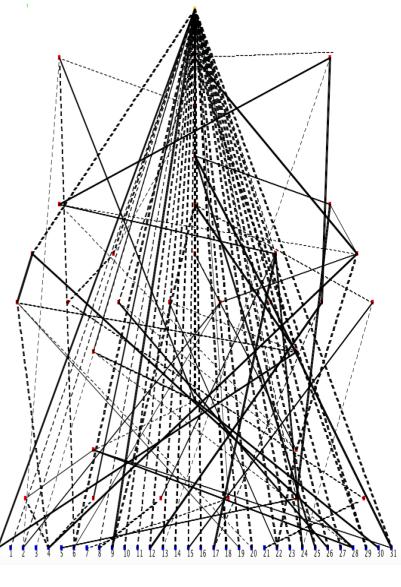
- One feature per game state element
- Minimal input processing by user
 - Pros:

 Networks less limited by domain[†]
 - Less human expertise needed
- Cons: + Large input space & networks
 - + Harder to learn, more time

† Gauci & Stanley. 2008. A Case Study on the Critical Role of Geometric Regularity in Machine Learning.



- NeuroEvolution of Augmenting Topologies⁺
- Synaptic and structural mutations
- Direct encoding
 - Network size proportional to genome size
- Crossover alignment via historical markings
- Inefficient with large input sets
 - Mutations do not alter behavior effectively

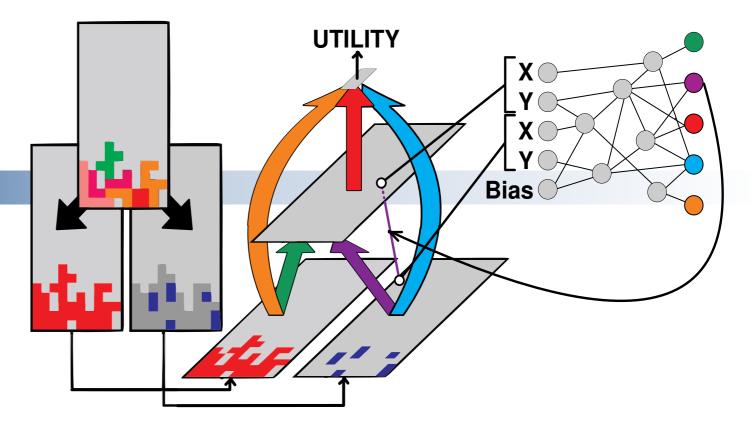


CCO 20

† Stanley & Miikkulainen. 2002. Evolving Neural Networks Through Augmenting Topologies

HyperNEAT

- Hypercube-based NEAT[†]
- Extension of NEAT
- Indirect encoding

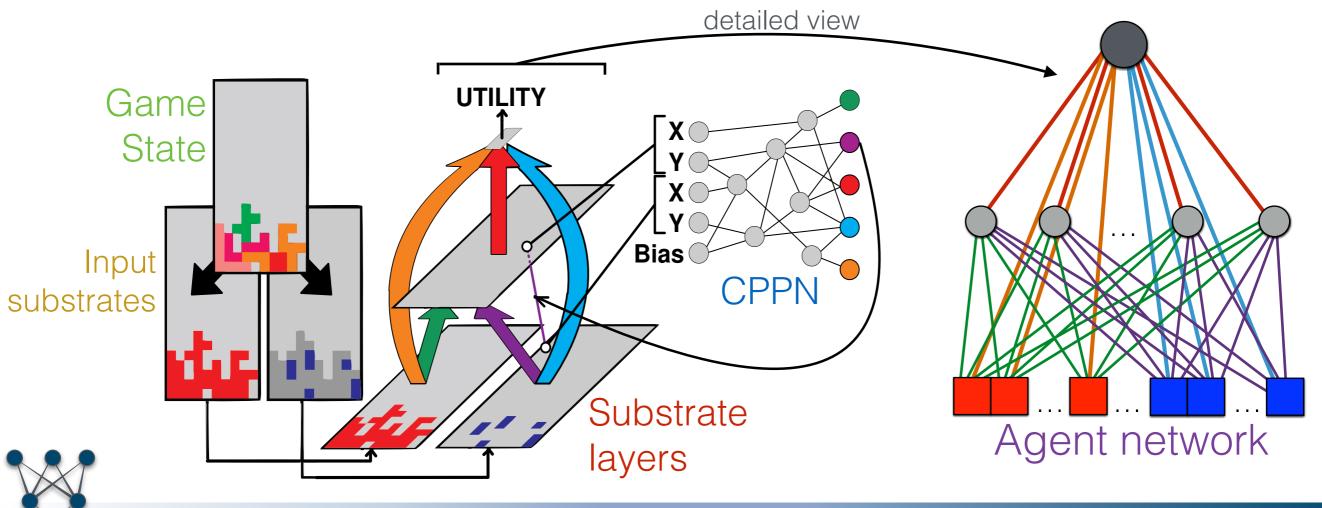


- Evolved CPPNs encode larger substrate-based agent ANNs
- Compositional Pattern-Producing Networks (CPPNs)
 - CPPN queried across substrate to create agent ANN
 - Inputs = neuron coordinates, outputs = link weights
- Substrates
 - + Layers of neurons with geometric coordinates
 - + Substrate layout determined by domain/experimenter

† Stanley et al. 2009. A Hypercube- based Encoding for Evolving Large-scale Neural Networks

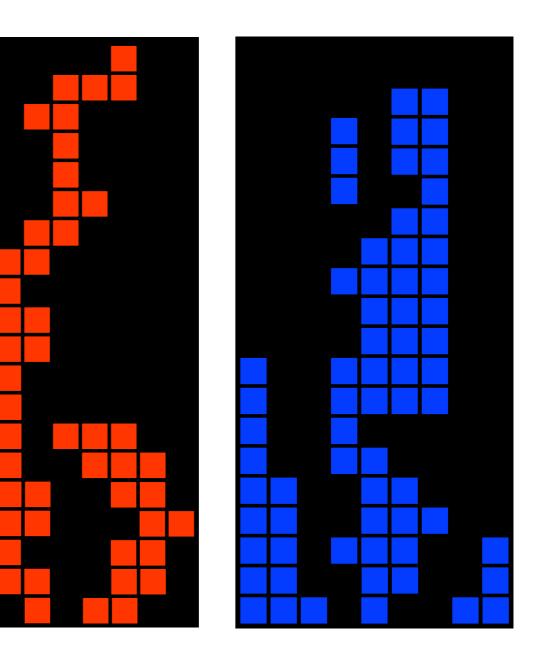
HyperNEAT with Tetris

- Geometric awareness: arises from indirect encoding
- CPPN encodes geometry of domain into agent via substrates
- Agent network can learn from task-relevant domain geometry



Raw Features Setup

- Board configuration:
 - Two input sets
 - 1. Location of all blocks
 - * block = 1, no block = 0
 - 2. Location of all holes
 - * hole = -1, no hole = 0
- NEAT: Inputs in linear sequence
- HyperNEAT: Two 2D input substrates



Hand-Designed Features Setup

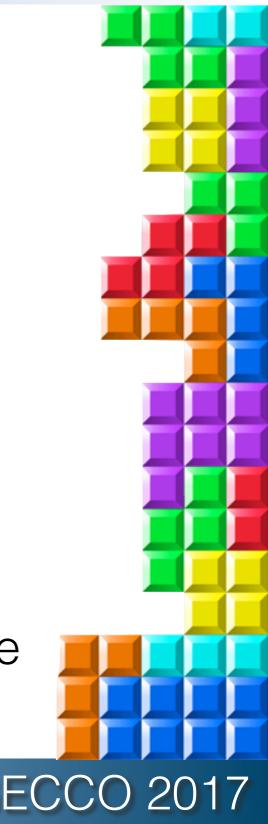
- Bertsekas et al. features[†] plus additional hole per column feature
- All scaled to [0,1] MAX HEIGHT X UTILITY Column height X Y 🗭 Bias Height difference Tallest column **+TOTAL HOLES** Number of holes + HOLES Holes per column HEIGHTS + DIFFS

GECCO 2017

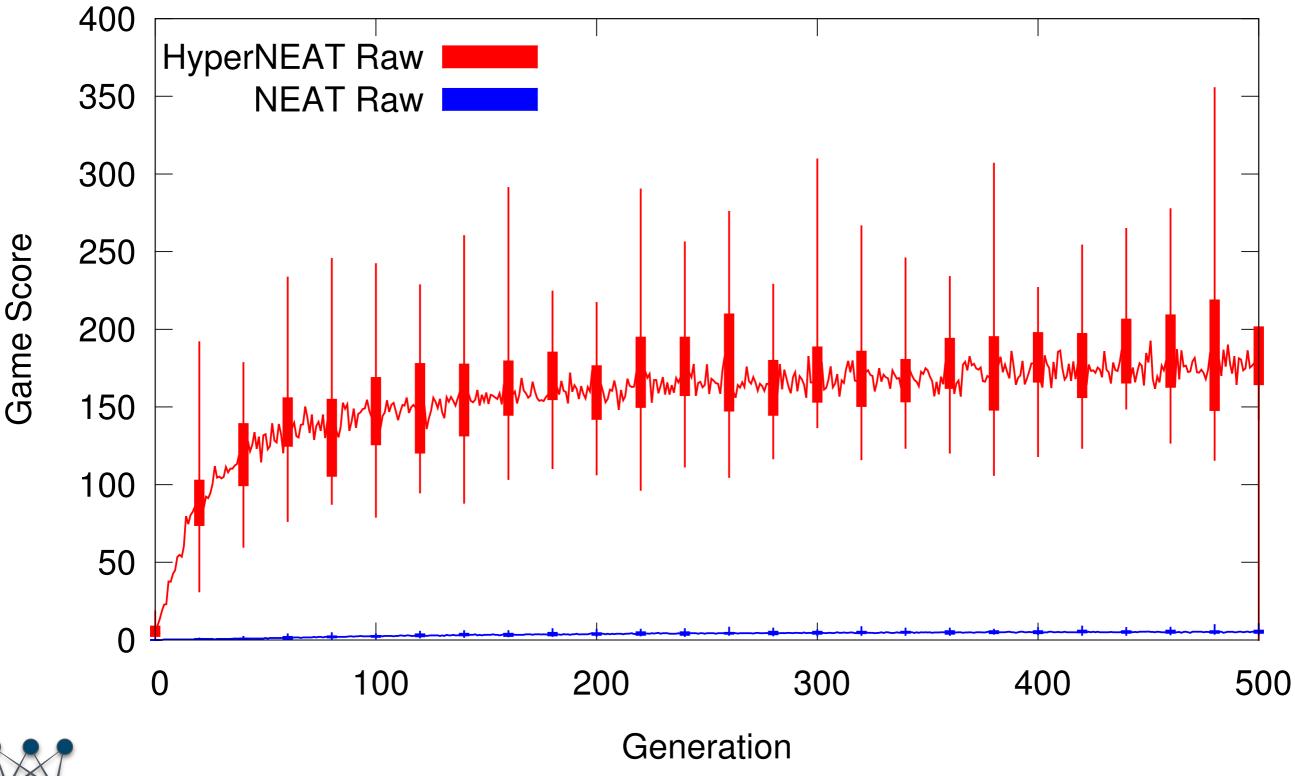
† Bersekas et al. 1996. Neuro-Dynamic Programming

Experimental Setup

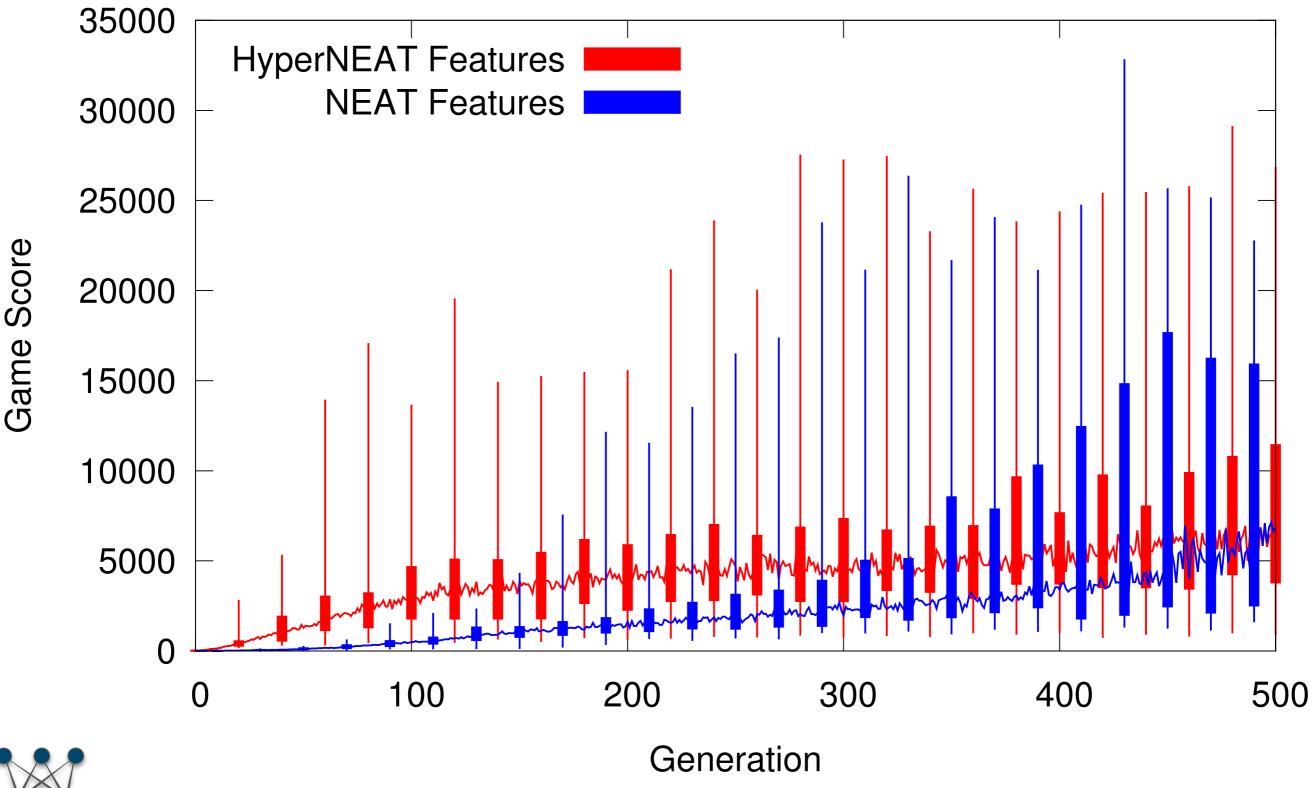
- Agent networks are afterstate evaluators
- Each experiment evaluated with 30 runs
 - + 500 generations/run, 50 agents/generation
 - Objectives averaged across 3 trials/agent
 - Noisy domain, multiple trials needed
- NSGA-II objectives: game score & survival time



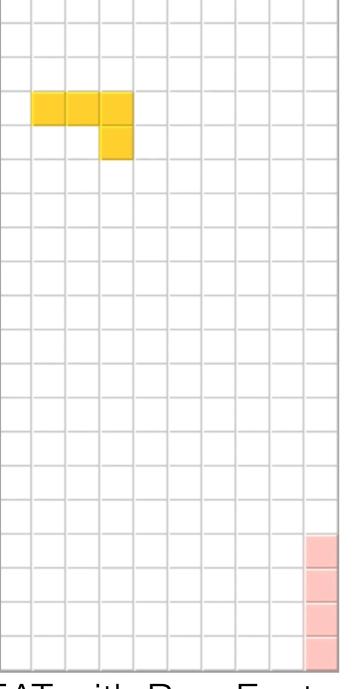
NEAT vs. HyperNEAT: Raw Features

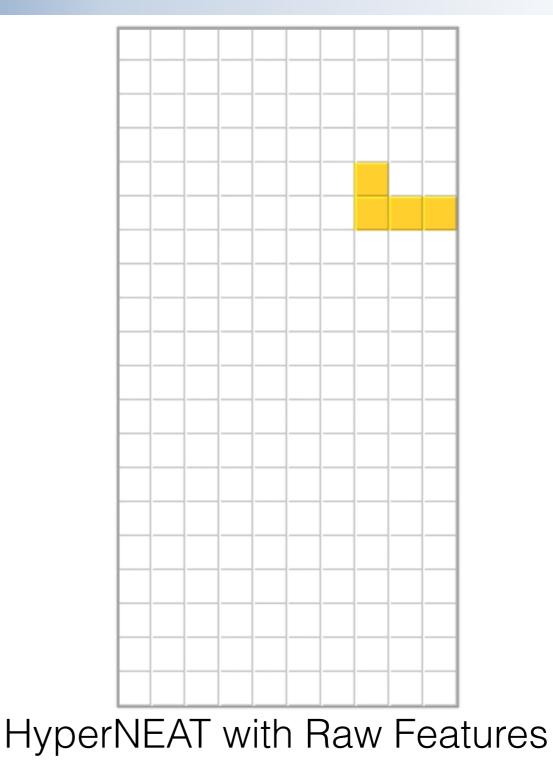


NEAT vs. HyperNEAT: Hand-Designed Features



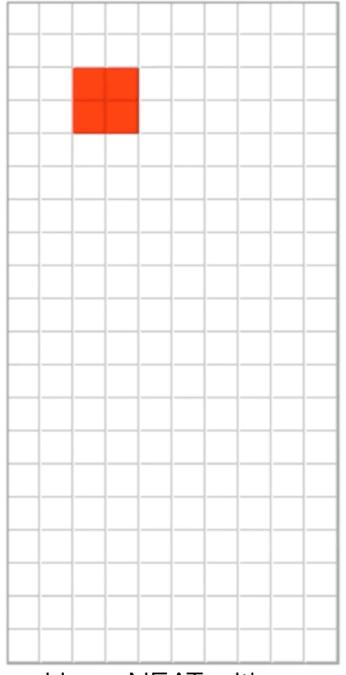
Raw Features Champion Behavior





NEAT with Raw Features

Hand-Designed Features Behavior

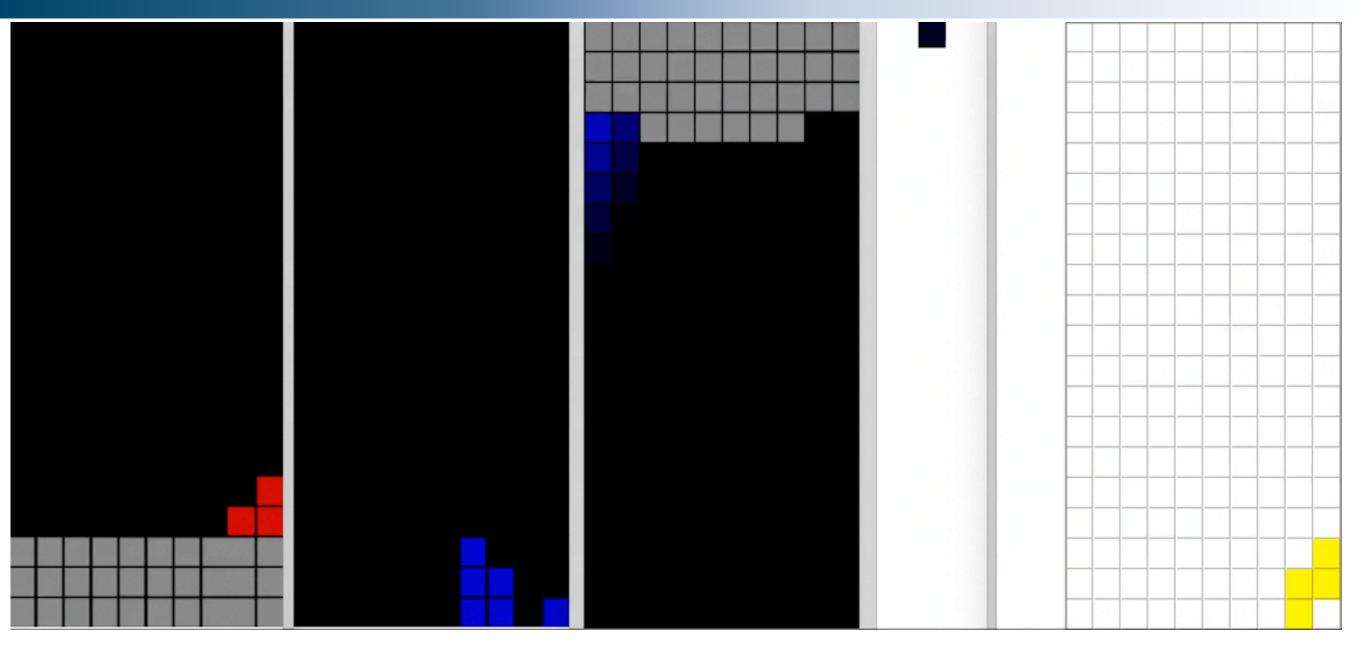


HyperNEAT with Hand-Designed Features

GECCO 2017

NEAT with Hand-Designed Features

Visualizing Substrates



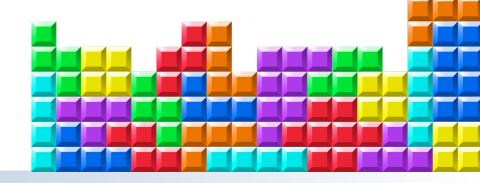
Inputs

Hidden

Output

Result

Discussion



- Raw features: HyperNEAT clearly better than NEAT
 - Indirect encoding advantageous
 - NEAT ineffective at evolving large networks
- Hand-Designed: HyperNEAT has less of an advantage
 - Geometric awareness less important
 - HyperNEAT CPPN limited by substrate topology

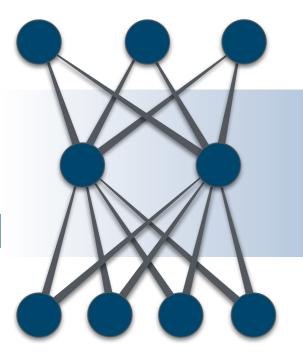
Future Work

- HybrID⁺
 - Start with HyperNEAT, switch to NEAT
 - Gain advantage of both encodings
- Raw feature Tetris with Deep Learning
- Raw features in other visual domains
 - Video games: DOOM, Mario, Ms. Pac-Man
 - Board games: Othello, Checkers

Clune et al. 2004. HybrID: A Hybridization of Indirect and Direct Encodings for Evolutionary Computation.

Conclusion

- Raw features
 - Indirect encoding HyperNEAT effective
 - Geometric awareness an advantage
- Hand-designed features
 - Ultimately NEAT produced better agents
 - HybrID might combine strengths of both



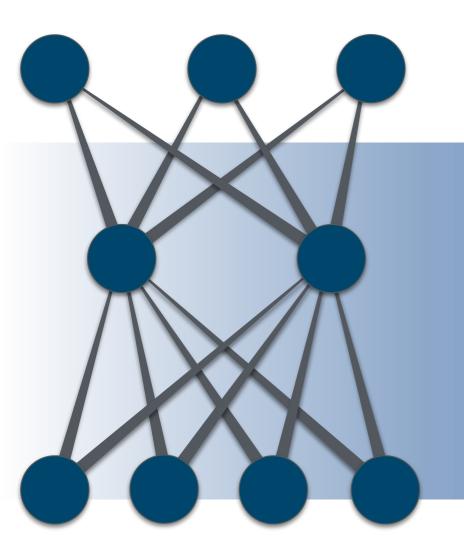
Questions?

Contact info:

gillespl@southwestern.edu schrum2@southwestern.edu gonzale9@alumni.southwestern.edu

Movies and Code:

https://tinyurl.com/tetris-gecco2017



Auxiliary Slides

C) 20

Game score

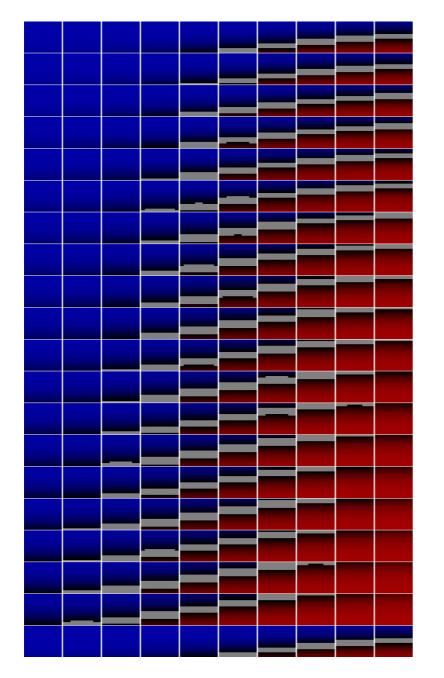
NSGA-II

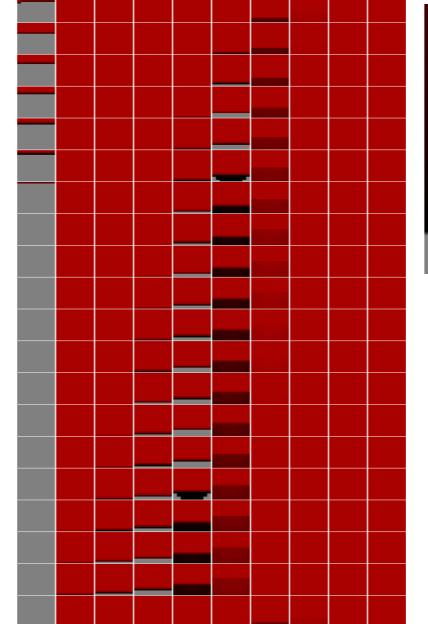
- Pareto-based multiobjective EA optimization
- Parent population, μ , evaluated in domain
- Child population, λ , evolved from μ and evaluated
- $\mu + \lambda$ sorted into non-dominated Pareto fronts
 - Pareto front: All individual such that
 - $v = (v_1, \ldots, v_n)$ dominates vector $u = (u_1, \ldots, u_n)$ iff 1.∀*i* ∈{1, *n*}: $v_i \ge u_i$, and Paretofront

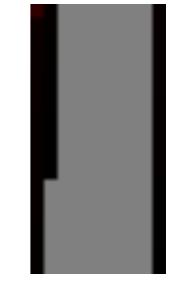
 $2.\exists i \in \{1,...,n\}: v_i > u_i.$

- New µ picked from highest fronts
- Tetris objectives: Game score, time

Visualizing Link Weights







Afterstate Evaluation

- Evolved agents used as afterstate evaluators
- Determine next move from state after placing piece
- All possible piece locations determined, evaluated
- Placement with best evaluation from state chosen
- If placements lead to loss, not considered
- Agent moves piece to best placement, repeats

