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ABSTRACT
Intelligent agents have a wide range of applications in robotics, video
games, and computer simulations. However, fully general agents
should function with as little human guidance as possible. Specifi-
cally, agents should learn from large collections of raw state variables
instead of small collections of hand-designed features. Learning
from raw state variables is difficult, but can be easier when agents are
aware of the geometry of the input space. Indirect encodings allow
agents to take advantage of the geometry of the task, and scale up to
large input spaces. This research demonstrates the relative benefits
of a direct and indirect encoding using raw or hand-designed features
in Tetris, a challenging video game. Specifically, the direct encoding
NEAT is compared against the indirect encoding HyperNEAT. Both
algorithms create neural networks to play the game, but HyperNEAT
makes better use of raw screen inputs, due to its ability to gener-
ate large networks that take advantage of the domain’s geometry.
However, hand-designed features lead to higher scores with both
algorithms. HyperNEAT makes better use of hand-designed features
early in evolution, but NEAT eventually overtakes it. Since each
method succeeds in different circumstances, approaches combining
the strengths of both should be explored.
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1 INTRODUCTION
Artificial Intelligence (AI) has been successfully applied to many
well-known game domains and has even outperformed human cham-
pions in domains like Chess [7] and Go [22]. However, success in
many challenging domains depends on the use of intelligent, hand-
designed features [11, 16, 21, 32], although there are exceptions
to this trend [12, 29], especially thanks to the emergence of Deep
Reinforcement Learning [17, 22].

Deep Reinforcement Learning and other methods that work with
large neural networks (such as HyperNEAT [25], which is used in
this paper) typically use raw or minimally processed visual informa-
tion as input organized in a manner that matches the domain’s layout
on the screen, i.e. these networks work with what a human would see.
However, such massive feature sets can be difficult to learn from.
In contrast, hand-designed features are carefully chosen in order to
give useful knowledge to a learning agent, and filter out worthless
or distracting information. Though effective, such an approach re-
quires considerable human effort, and must be repeated for each new
domain in which a learning algorithm is applied. This restriction has
sparked much interest in agents that can learn in multiple domains,
such as General Game Playing for board games [13] and General
Video Game Playing [18]. There has also been interest in methods
that can play all games from the Atari 2600 suite [15, 17].

Like the Atari suite, Tetris is a well-known and popular domain. In
Tetris, artificially intelligent agents have had success with approaches
such as evolved evaluation functions [3], CMA-ES [4], Temporal
Difference Learning [1, 14], and Policy Search [27]. However, these
approaches rely solely on intelligent, hand-designed features. There
does not seem to be any published work in which Tetris is learned
using raw screen inputs.

In this paper, agents learn to play Tetris using both raw screen in-
puts and intelligent, hand-designed features with two neuroevolution
methods: the direct-encoding NEAT [26] and the indirect-encoding
HyperNEAT [25]. NEAT is a popular means of evolving artificial
neural networks (ANNs) with arbitrary topologies and has been ap-
plied in many game domains in the past [8, 20, 21, 24]. However,
NEAT genotypes are directly encoded, meaning that each gene cor-
responds to one component of the network, which creates difficulties
when scaling up to very large input spaces. This limitation was
part of the motivation behind the development of HyperNEAT, an
indirect encoding that can easily create massive neural networks
through a generative process that derives phenotype networks of
arbitrary size from compact genotypes. HyperNEAT has also been
applied to game domains and has been successful using visual inputs
in these domains [12, 15, 33].
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Considering the success of HyperNEAT in previous domains
using visual inputs, Tetris is a prime candidate in which to apply Hy-
perNEAT using raw screen inputs. When compared with NEAT, Hy-
perNEAT performs much better using raw screen inputs, though still
poorly in comparison with previous attempts using hand-designed
features. Therefore, NEAT and HyperNEAT are also compared us-
ing hand-designed features, which increases the performance of both
methods. Applying hand-designed features with HyperNEAT is not
straightforward, because not all features are geometrically related.
Nevertheless, it can be done and results in reasonably good play.
However, the performance of regular NEAT eventually reaches the
same median level of performance, and the overall distribution of
champions has more higher scores. These comparisons reinforce
the notion that indirect encodings have clear strengths, but are not
universally superior to direct encodings. In particular, this paper
gives an example of how indirect encodings can be harder to apply
and less effective with hand-designed features.

This paper proceeds by first detailing the domain of Tetris fol-
lowed by an in-depth look at pertinent previous research, a brief
overview of the relevant evolutionary algorithms, experimental setup
and finally a discussion of the final results.

2 TETRIS
Tetris was created in 1989 by Russian game designer Alexey Pajitnov.
It is now one of the most ubiquitous games on the planet and is
available on nearly all devices that support video games. Its relatively
simple game mechanics combined with a large state space are what
make it such an interesting and challenging domain. This section
discusses the gameplay of Tetris, followed by a review of previous
research in this domain.

2.1 Gameplay
In the game of Tetris, pieces called tetrominoes (Figure 1), that
are various configurations of four blocks, are randomly selected to
slowly fall one by one from the top of the screen. As a piece falls,
the player can move it from side to side and rotate it in order to
move it into a desirable position. The player seeks to completely fill
horizontal rows of a 10 block wide and 20 block high board with
blocks from the tetrominoes. Sometimes, placement of a piece can
create holes, which are open spaces with at least one block above
them. Some holes can be filled by moving in a piece from the side
as it falls, but holes can also become completely covered by falling
pieces. The accumulation of holes should be avoided since they
prevent rows from being filled. When a row is completely filled,
the row disappears and all blocks above it are shifted down one
space. It is possible to clear multiple rows at once, and the clearing
of rows earns points. In the implementation used in this paper (part
of RL-Glue [28]), one, two, four or eight points are earned for
simultaneously clearing one, two, three or four lines, respectively.
Clearing four lines simultaneously is called a Tetris. Play continues
until the blocks reach the top of the screen, at which point the game
is lost. The goal is to maximize the score, but this goal is tied to the
goal of playing for as long as possible.

Part of what makes Tetris so hard and therefore so interesting is
the wide variety of pieces and how it is impossible to place every
sequence of blocks in a way that the player will not lose, as research

Figure 1: Tetrominoes. The seven available tetromino pieces in the
Tetris domain. Each is referred to using the letter it most closely resem-
bles, from left to right: Z, S, L, J, T, O, I.

indicates that the presence of Z and S shaped tetrominoes assures the
eventual termination of every game [6]. Furthermore, Tetris is an NP-
complete problem, even when the player knows the identity and order
of all the pieces [5]. However, players can plan better if they are
aware not only of the currently falling piece, but of the identity of the
piece that will follow, as is allowed in some implementations of the
game. Controllers that use this extra information are known as two-
piece controllers, while those that are only aware of the current piece
are one-piece controllers [30]. The RL-Glue [28] implementation of
Tetris used in this paper uses one-piece controllers.

Much work has been done in developing intelligent controllers
to play Tetris using the RL-Glue simulator and other custom imple-
mentations. The next section details much of this work.

2.2 Previous Work
Beyond becoming a widely popular game, Tetris has also become a
popular benchmark for AI study and competitions. Many different
approaches have been applied to Tetris. However, these approaches
to Tetris often make use of a simplified version of the game that
reduces the domain to choosing which column and rotation in which
to drop the piece. This version ignores the restriction in the original
game of potentially being unable to move and rotate a piece quickly
enough to either side in order to place it in the desired manner due
to highly stacked blocks obstructing movement. It has been shown
that this simplified version improves the number of lines an agent
is able to clear [30]. When researchers apply their methods to the
full version of the game, they generally learn an afterstate evaluator,
which only considers game states that can possibly be reached.

An early and influential approach to Tetris was that of Bertsekas
et al. [1, 2], known as λ-Policy Iteration. However, this work is most
influential for the hand-designed features it introduced, which have
been used in many other approaches. These features will be referred
to as the Bertsekas features and are described in Section 4.2.

The reinforcement learning community has been especially active
in applying various algorithms to Tetris, frequently making use of
the Bertsekas features. For example, the noisy cross-entropy method
of policy search [27] performed one hundred times better than the
original results of Bertsekas et al. Later work using Approximate
Dynamic Programming was able to roughly match this performance
with fewer samples [11]. Tetris was even a test domain included in
the 2008 Reinforcement Learning Competition [34]. The winning
approach was an extension of the cross entropy method that also
introduced some additional new features [31].

Comparatively little work has been done with evolutionary com-
putation in Tetris. Some examples include a simple evolutionary
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algorithm that assigned weights to a linear function approximator [3]
and an application of the Covariance Matrix Adaptation Evolution
Strategy [4]. Neuroevolution in general and NEAT in particular have
also not been applied, nor has HyperNEAT.

None of the work mentioned above made use of raw screen inputs
from the 10 by 20 screen grid. Instead, all made use of some col-
lection of hand-designed features. Regardless, the state of the art in
Tetris is quite skilled. The purpose of this paper is not to challenge
the state of the art, but to explore the comparative success of direct
and indirect encodings using both raw and hand-designed features,
using Tetris as an example domain. The next section describes the
specific evolutionary approaches being compared.

3 EVOLUTIONARY ALGORITHMS
Directly and indirectly encoded neural network afterstate evaluators
for Tetris are evolved using NEAT (Neruo-Evolution of Augmenting
Topologies [26]) and HyperNEAT (Hypercube-based NEAT [25]),
respectively. In addition to using the standard game score as a
fitness function, an additional shaping objective is used (number of
time steps), necessitating the use of the multiobjective evolutionary
algorithm NSGA-II (Non-dominated Sorting Genetic Algorithm II
[10]). Code from all experiments is available as part of MM-NEAT1.

3.1 NSGA-II
The Non-Dominated Sorting Genetic Algorithm II (NSGA-II [10])
is a Pareto-based multiobjective evolutionary optimization algorithm.
Its use makes the inclusion of an additional shaping objective de-
scribed in Section 4.5 straight-forward, because no weighting of
different objectives is necessary. The final results are still evaluated
entirely in terms of game score, which is the main objective of inter-
est. However, because multiple objectives are used during evolution,
a principled way of dealing with them is needed.

NSGA-II uses the concepts of Pareto Dominance and Pareto
Optimality to sort a population into Pareto layers according to their
objective scores. Each layer consists of agents whose scores do not
Pareto dominate the scores of others in the same layer. One score
only dominates another if it is at least as good in all objectives, and
strictly better in at least one objective. Thus, in a multiobjective
sense, the layer whose scores are not dominated by any scores in the
population (the Pareto front) consists of the best individuals, who
are therefore most worthy of selection and reproduction. Individuals
in the layer beneath this one are second-best, and so on.

NSGA-II uses (µ + λ) elitist selection favoring individuals in
higher layers over those in lower fronts. In the (µ + λ) paradigm, a
parent population of size µ is evaluated, and then used to produce a
child population of size λ. Selection is performed on the combined
parent and child population to give rise to a new parent population
of size µ. NSGA-II typically uses µ = λ.

When performing selection based on which Pareto layer an indi-
vidual occupies, a cutoff is often reached such that the layer under
consideration holds more individuals than there are remaining slots
in the next parent population. These slots are filled by selecting indi-
viduals from the current layer based on a metric called crowding dis-
tance, which encourages the selection of individuals in less-explored
areas of the trade-off surface between objectives. A combination of

1Download at http://nn.cs.utexas.edu/?mm-neat

dominance criteria and crowding distance is used to derive each new
child population from the preceding parent population.

NSGA-II provides a way to select the best solutions based on
multiple objectives, but it is indifferent as to how these solutions
are represented. In this paper, NSGA-II was used to evolve artifi-
cial neural networks using either the direct encoding NEAT, or the
indirect encoding HyperNEAT.

3.2 NEAT
Neuro-Evolution of Augmenting Topologies (NEAT [26]) has been a
benchmark neuroevolutionary algorithm for years. The main attrac-
tion of NEAT is that it can evolve a network’s topology in addition
to its weights. NEAT starts with an initial population of simple, fully
connected networks with no hidden nodes. Throughout evolution,
NEAT gradually complexifies the networks by augmenting the topol-
ogy through mutations that add new links and nodes. The weights
of existing network links can also be modified by mutation.

NEAT also allows for crossover between networks during repro-
duction. In order to account for competing conventions resulting
from different topological lineages, NEAT assigns historical markers
to each link and node within the genome, which allows for efficient
alignment of network components with shared origin.

However, each of these components in the genome directly cor-
responds to a component of the network phenotype, which is why
NEAT is classified as a direct encoding. A consequence of this
encoding is that the size of an evolved network is proportional to
the size of its genome. Despite this drawback, NEAT has been
successful in many video game domains [8, 20, 21, 24].

However, these applications each use less than 40 carefully chosen
features. When scaling up to larger numbers of features that are
simpler and less informative, direct encodings like NEAT struggle to
make progress. The reason for this struggle is that a single structural
mutation (i.e. the addition of one new link or node) does not do
much to significantly modify the behavior of an agent, yet many
such mutations are needed in order for a large network to optimize
its behavior. Furthermore, large random changes to a genotype
are not likely to be beneficial anyway, so mutations whose impact
across the phenotype is large but regular are needed. Finally, NEAT
networks have no way of leveraging information about the geometric
organization of various inputs if such information is available. All
of these shortcomings of NEAT are addressed by HyperNEAT, an
extension of NEAT described next.

3.3 HyperNEAT
Hypercube-based NEAT [25] is an indirect encoding that extends
NEAT by evolving networks that encode the connectivity patterns
of typically larger substrate networks, which are the evaluated net-
works in a given domain. Specifically, HyperNEAT genotypes are
Compositional Pattern-Producing Networks (CPPNs [23]), which
differ from standard ANNs in that their activation functions are not
limited to a single type, such as the standard sigmoid or hyperbolic
tangent functions. Instead, CPPN activation functions can be any of
collection of functions that produces useful patterns, such as sym-
metry and repetition. As such, the specific activation functions used
in this work are: sigmoid, Gaussian, sine, sawtooth wave, absolute
value, and identity clamped to the range [0,1]. This wide selection

http://nn.cs.utexas.edu/?mm-neat
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of activation functions also necessitates the addition of a mutation
operation that randomly replaces the activation function of a given
node with another one from the set of possibilities.

However, what makes CPPNs distinct from typical neural net-
works, and what makes HyperNEAT so powerful, is how these
CPPNs are used. The CPPNs are repeatedly queried across a neural
substrate, and the outputs of the CPPN are used to construct a neural
network within that substrate, thus making the substrate network
indirectly encoded by the CPPN. These substrates are collections
of layered neurons assigned explicit geometric locations with pre-
determined potential connections between neurons in different layers.
The layout of the substrate is defined by the experimenter and is
domain-specific. It specifies how many substrate layers are needed,
how many neurons are in each layer, which are input, hidden and
output neurons, and where the neurons are located.

When the CPPN is queried across these substrates, it is deter-
mining whether a potential link between layers will exist, and if so,
what its weight will be. Since this paper extracts Tetris inputs from
a 2D screen, the substrate layers are 2D as well. Thus, all CPPNs
have five inputs: The x and y coordinates of both source and target
neurons in different substrate layers, and a constant bias of 1.0. The
manner in which a CPPN is queried to create a substrate network for
processing raw Tetris screen inputs is shown in Figure 2.

The CPPN has a separate output for each pair of substrate lay-
ers between which connections can exist. For any pairing of x/y-
coordinates that are input to the CPPN, the output corresponding
to the given substrate layer pairing is the one that defines the link.
Specifically, links are only expressed if the magnitude of the relevant
CPPN output exceeds 0.2. For links that are expressed, the output
value is scaled toward 0 to eliminate the region between −0.2 and
0.2. The resulting value then becomes the link weight. The use of
these separate outputs avoids the need for a z-coordinate input to
the CPPN to account for how the substrate layers are stacked and
allows the connection patterns between different pairs of layers to be
drastically different rather than simply varying in accordance with z.

Finally, CPPNs also have outputs that define a constant bias
associated with each neuron in a non-input substrate. In a typical
neural network, such a bias could easily be applied with the use of
an additional input with a constant value. However, in a substrate
network, all neurons require geometric coordinates. Because a bias is
detached from the actual inputs, it needs to effectively occupy its own
substrate. Having additional CPPN outputs effectively accomplishes
this, and allows each neuron to store its bias value and add it to
subsequently received inputs, which is equivalent to actually having
a separate bias input.

The geometric mapping of inputs onto substrate layers is a novel
innovation of HyperNEAT, but it has both advantages and disadvan-
tages. The geometric nature of the substrate allows for the agent
network to take advantage of task-relevant geometry of the domain,
because typically there is an important relationship between the
geometry of a state space and how an agent should evaluate states
from that space. The geometric nature of the substrate allows for
the agent network to access information about the geometric regu-
larities of the domain. However, intelligent, hand-designed features
are less likely to have natural geometric associations with each
other, which makes embedding them into geometrically organized
substrates problematic. The most straight-forward solution to this

UTILITY

X

Y

X

Y

Bias

Figure 2: Indirect Encoding of Tetris State Evaluators with Hyper-
NEAT using Raw Screen Inputs. Raw screen inputs are fed to the net-
work as two 10 by 20 substrate grids, one identifying all current blocks,
and another identifying all current holes. These grids are then mapped
to the corresponding input substrate layers in the large neural network
created by the CPPN on the right. Each colored arrow between sub-
strate layers indicates that every possible feed-forward link between
these layers is queried by the CPPN. The inputs that define a link are
the x/y-coordinates within the plane of each layer of the source and tar-
get nodes. There is also a constant bias input to the CPPN. The weight
of a link depends on the output of the neuron in the CPPN correspond-
ing to the arrow color. The querying and creation of one example link
is shown. The CPPN also has special outputs defining internal bias val-
ues within each non-input neuron, but these outputs are left out of the
figure for clarity. The output layer of the substrate network consists of
a single neuron that defines the utility of the given Tetris board game
state. This architecture is aware of the geometry of the input space and
allows HyperNEAT to learn how to play Tetris using raw screen inputs.

problem is to embed groups of geometrically related features to-
gether on the same substrate, while having separate input substrates
for each such group [19]. However, when there are features that
are geometrically distinct from all other features, they need to be
embedded on small substrate layers with a single neuron. Because
each pairing of connected substrate layers necessitates an additional
CPPN output, a proliferation of geometrically distinct groups of
features can considerably bloat a CPPN, as can be seen in Figure 3.

The consequences of how HyperNEAT genotypes and phenotypes
are configured in contrast to those of NEAT are explored in the
experiments discussed next.

4 EXPERIMENTAL SETUP
The following sections describe how Tetris agents used neural net-
works to determine their actions, the hand-designed and raw screen
inputs used by these networks, the specific configuration of Hyper-
NEAT substrate layers, and the general evaluation parameters used
in all experiments.

4.1 Afterstate Evaluation
To determine where each piece will go, the agent uses the evolved
network as an afterstate evaluator to make decisions about piece
placement. Before a new piece begins to fall, a search algorithm
considers every possible location in which the piece could be placed
and remembers the sequence of moves leading to each placement.
Placements that lead to an immediate loss are not considered. Ruling
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Figure 3: Indirect Encoding of Tetris State Evaluators with Hyper-
NEAT using Hand-Designed Features. Input substrate layers for hand-
designed inputs are grouped in terms of shared geometric relations.
Specifically, the ten column heights, nine column differences and ten
column hole counts are grouped in 1D substrates from left to right. The
max height and total hole count features each have their own 1 by 1 sub-
strates. Each of these layers has links to a common hidden layer and to
the output neuron. These links are defined by the CPPN outputs shown
on the right. The presence of many more substrate layers means that
more CPPN outputs are needed. The y-coordinate inputs of the CPPN
are not actually relevant because these substrate layers are 1D (y will
always equal 0), but the extra inputs are kept for consistency with the
raw input experiments.

out loss states in this way allows even a poor agent to survive slightly
longer than it would otherwise. For both hand-designed and raw
features, inputs for the network are taken from the states that result
from each valid placement. Note that if a placement fills a row, that
row will be cleared before the state’s feature values are calculated.
For each of these afterstates, the network will produce a single output,
which is a utility score between -1 and 1. The piece placement with
the highest utility score across all possible placements is selected,
and the Tetris agent then carries out the remembered sequence of
actions that lead to the desired placement. After the placement, a new
piece appears and the process repeats. Since placement evaluation
occurs before the piece begins to fall, evaluation time does not in
any way exclude available piece placements.

Because these experiments use the full version of Tetris and not
the simplified version mentioned in Section 2.1, some placements
are not possible and are therefore not considered for evaluation. In
particular, it may not be possible to move a piece to the side quickly
enough to stack it on top of blocks piling up on the sides, because
the piece may have fallen beneath the top of the stack by the time
it has moved far enough to the side. However, moves that involve
waiting for a piece to fall for a while before moving it sideways into
an exposed hole are possible.

4.2 Hand-Designed Features
The hand-designed features used in these experiments are the Bert-
sekas features [1] mentioned in Section 2.2, plus additional features
described below. The Bertsekas features include the heights of each
of the ten columns, the height differences between all nine pairs of

adjacent columns, the height of the tallest column and the total num-
ber of holes. These features have already proven themselves in many
other Tetris experiments [11, 14, 27, 30, 31]. However, additional
features were added to provide the agent with more fine-grained in-
formation about the holes. Specifically, the number of holes present
per column was included to allow a more fair comparison with the
raw input setup, which also includes more specific information about
the locations of holes (Section 4.3).

All of these features are scaled to the range [0,1]. In this paper,
standard NEAT networks have an additional constant bias input of 1,
whereas HyperNEAT networks need no bias input due to the biases
being stored in each individual neuron, as discussed in Section 3.3.
As a result, NEAT uses 32 hand-designed feature inputs, whereas
HyperNEAT only uses 31. Figure 3 shows how these inputs would
be fed into a network produced by HyperNEAT.

4.3 Raw Screen Inputs
For all networks evolved with raw screen inputs, the current board
configuration was split into two sets of inputs. The first set identified
the locations of all blocks, using 1 to represent the presence of a
block and 0 the absence of a block. The second set identified only the
locations of holes, which had a value of -1, while all other locations
had a value of 0. Including the locations of holes made it easier
to distinguish holes from empty non-hole locations. Both types
of networks used these inputs, but NEAT networks also received
a constant bias input of 1, making for a total of 401 inputs for
NEAT networks and 400 for HyperNEAT networks. Once again,
HyperNEAT does not need a distinct bias input for reasons described
in Section 3.3. Figure 2 shows how the screen inputs are split into
two sets and fed to a substrate network produced by HyperNEAT.

4.4 HyperNEAT Substrates
For HyperNEAT substrates, only one hidden layer was used for all
experiments. Some preliminary experiments were conducted with
more hidden layers, and although the added neurons generally did
not hurt performance, they also did not help it. Therefore, large
experiment batches were conducted only with the smaller networks.
As is standard when configuring neural networks, each input layer
was fully connected to the hidden layer, and the hidden layer was
fully connected to the output layer. Additionally, each input layer
was also fully connected to the output layer, since much previous
successful work in Tetris was done with simple linear function
approximators. Since signals could reach the output neuron both
through the hidden layer and directly from the inputs, networks had
the option of bypassing the hidden layer if it suited them.

HyperNEAT networks evolved with raw screen inputs had two
separate input substrates. The first substrate was for the block loca-
tions and second was for the hole locations. The 2D organization of
this data contrasts with the input organization for NEAT networks,
which was arranged linearly from left to right and top to bottom with
the block location inputs preceding the hole location inputs. The
size of the hidden layer was chosen to equal the size of one input
board, and is thus 10 by 20, containing 200 hidden neurons.

The x/y-coordinates sent as CPPN inputs were always normalized
so that the CPPN had the ability to represent patterns at arbitrary
resolution. Such normalization usually places the origin in the center
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of the substrate, but there is no geometric relevance about the vertical
center of the Tetris board. Rather, distance from the bottom of the
board is important. Horizontal distance from the vertical midline
to the sides is also relevant. Therefore, the Tetris board had its x-
coordinates mapped to [-1,1] and its y-coordinates mapped to [0,1]
(origin at bottom center). The way the CPPN creates the substrate
network and accepts raw screen inputs is shown in Figure 2.

CPPNs evolved with hand-designed features were actually more
complicated than their raw screen counterparts due to the nature of
the hand-designed features. The ten height features have a 1D geo-
metric relationship to each other, as do the nine column difference
and ten column hole features. However, none of these subsets of fea-
tures have any geometric relationship to the others. The maximum
height and total holes features are also stand-alone features that, de-
spite having a relation to the column heights and holes respectively,
do not have a clear geometric relationship to these feature subsets.
Therefore, each of these five categories of features resides on its own
input substrate layer. Because the total number of these features is
31, this is also the number of neurons in the 1D hidden layer.

Note that because each of these substrate layers is linear, the
y-coordinate inputs of the CPPN are superfluous. The y-coordinate
input is 0 in all cases, and only x varies, with the middle of each linear
substrate having an x-coordinate of 0. The y-coordinate inputs were
kept for consistency across runs, but removing them should have no
negative effect, and could even improve performance slightly.

4.5 Evaluation Setup
Each experiment consisted of 30 runs per approach lasting 500 gen-
erations with a population size of µ = λ = 50. Tetris is a noisy
domain, meaning that repeated evaluations are likely to yield wildly
different scores due to randomness in the sequence of tetrominoes
that fall in each game. To mitigate the noisiness slightly, the fitness
scores for each agent were objective scores averaged across three
trials. The specific objectives used when evaluating each generation
with NSGA-II were the game score and the number of time steps
the agent survived. The time steps objective was included because
survival is always good, since it provides more time to score points
and is particularly useful in the early stages of evolution when agents
may not be able to clear any rows at all.

When creating the next generation of networks, there was a 50%
chance an offspring network would be the product of crossover.
Each offspring network also had a 5% chance per link of Gaussian
perturbation. There was a 40% chance of adding a new link and a
20% chance of adding a new node. HyperNEAT CPPNs had a 30%
chance of a randomly chosen node having its activation swapped
with another random function from the available set (Section 3.3).

5 RESULTS
HyperNEAT and NEAT reached comparable levels of performance
when using the intelligent hand-designed features (Figure 4), but
there are important differences. From generation 0 to 200, Hyper-
NEAT outperformed NEAT, with a median score of nearly 5,000
reached by generation 200 and outliers reaching up to 15,000. In
contrast, NEAT networks only had a median score of around 1,000
by generation 200. However, by this point HyperNEAT performance
had flattened out while NEAT performance kept climbing. In fact,
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Figure 4: Boxplots of HyperNEAT and NEAT Performance with
Hand-Designed Features. Boxplots depicting minimum, lower quar-
tile, median, upper quartile and maximum performance of the cham-
pions from each trial are shown for NEAT and HyperNEAT across 30
runs with hand-designed features. The median is plotted for all gener-
ations, but boxplots are only shown at staggered intervals for the sake
of readability. HyperNEAT performance is superior to NEAT early in
evolution, but levels out while, in contrast, NEAT performance grad-
ually grows. Median NEAT performance eventually reaches median
HyperNEAT performance, and NEAT’s upper quartile surpasses that
of HyperNEAT. So although NEAT performance climbs more slowly, it
does produce more strong results in the end.
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Figure 5: Boxplots of HyperNEAT and NEAT Performance with Raw
Screen Inputs. Across 30 runs for each method using raw screen inputs,
performance is depicted in the same manner as in Figure 4. Hyper-
NEAT performance shoots up before reaching a plateau, but NEAT is
incapable of learning to work with the raw inputs at all.

the distribution of NEAT scores begins to shift upward, with upper
quartile and maximum scores reaching higher and higher. Near
generation 500, both approaches had tied median scores and tied
maximum scores, but the upper quartile of NEAT was much higher
than that of HyperNEAT runs. However, this slight difference in
the final generation was not significant according to a two-tailed
Mann-Whitney U test (U = 500,N = 30,p ≈ 0.4671).

In contrast, HyperNEAT vastly outperformed NEAT when using
raw screen inputs (Fig. 5), and this difference is significant (U =
0,N = 30,p ≈ 2.82 × 10−11) because all HyperNEAT scores are
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higher than all NEAT scores. Across runs, HyperNEAT reaches a
median score of 200 and its maximum scoring run reached 350. In
contrast, NEAT networks were unable to reach a score of more than
15 even by generation 500. These scores are of course much lower
than what is achieved using the intelligent hand-designed features,
but HyperNEAT at least demonstrates that it is capable of learning
to play the game, whereas NEAT was completely incapable.

Videos of representative behaviors provide insight into how differ-
ent methods play the game. These videos can be seen at southwestern.
edu/∼schrum2/SCOPE/tetris.html. The best performing agents for
HyperNEAT and NEAT with raw inputs each developed distinct
behaviors, which is not surprising given the vast difference in scores.

NEAT champions using raw features exhibit the same behavior
of stacking pieces on the sides of the board until they were full, thus
forcing the agent to finally fill in the center of the board. However,
this filling was done so inefficiently and created so many holes that
lines were rarely cleared. In fact, by the time that these agents were
forced to place pieces in the middle area of the screen, the few lines
that they cleared seemed to be mostly coincidental. Once the center
began to fill up, it was too late for the network to overcome the maze
of holes it had created and it quickly lost soon after.

In contrast, the HyperNEAT networks using raw screen inputs
play the game competently. These agents stack pieces efficiently
and clear lines reasonably well. Sometimes they leave one column
unfilled which creates an opportunity to get a Tetris (four lines
cleared) whenever an I-shaped tetromino appears. Clearing multiple
lines simultaneously is worth more points, so it makes sense that such
a behavior would arise. However, if no I-shaped tetromino appears,
the agent ends up in a dangerous situation. Often, HyperNEAT
networks would settle for using L-shaped and J-shaped tetrominoes
to fill these gaps, clearing only two or three lines depending on the
arrangement of blocks. This behavior ultimately led to the downfall
of the HyperNEAT agents, because it sometimes created holes that
were difficult to fill, often leading to a loss.

The behaviors exhibited by NEAT and HyperNEAT networks
using hand-designed features were not radically different from each
other, but the best results produced by NEAT were more efficient
than their HyperNEAT counterparts. Both approaches favored clear-
ing rows whenever the opportunity arose. Because of the randomness
in which pieces fall, there are some situations in which a piling up
of blocks is unavoidable, and it can be hard to tease out distinctions
between approaches based purely on observation. However, both
NEAT and HyperNEAT exhibit the occasional ability to clear out
an arrangement of highly stacked blocks back to the bottom of the
board. Ultimately, the main difference between NEAT and Hyper-
NEAT when using hand-designed features seems to be that the best
NEAT champions are less tolerant of holes, which allows them to
maintain the level of the blocks at a lower height for longer.

6 DISCUSSION AND FUTURE WORK
The scores achieved by even the best NEAT networks using hand-
designed features are not record-breaking, but the lessons learned
from contrasting the performance of NEAT and HyperNEAT with
both raw and hand-designed features are interesting.

Overall, it is clear to see the advantage HyperNEAT has over
NEAT in the Tetris domain when using raw features. No NEAT

agent using raw features was able to play competently at all, and all
lines cleared seemed to be coincidence rather than strategy. NEAT
agents likely only survived as long as they did due to the fact that
loss states are never considered (Section 4.1).

However, this dismal performance by NEAT did give us pause,
and led to the consideration of other experimental setups to make the
comparison more fair. Specifically, we wondered if the simplicity of
NEAT’s initial population, lacking in all hidden neurons, might be
putting NEAT at an unfair disadvantage. Therefore, preliminary runs
were also conducted in which directly encoded networks evolved
by NEAT were initialized with a fully connected version of the
topology defined by HyperNEAT substrates using raw features. It
was hoped that seeding the initial population in this fashion might
provide it with useful structure. However, these seeded populations
performed even worse than regular NEAT with raw screen inputs,
solidifying the conclusion that HyperNEAT is far superior to NEAT
when using these inputs. The reason that both variants of NEAT fail
seems to simply be that the size of the genome is too large, and it
is improbable that any sort of useful regular structure can evolve
across such a large space using only isolated mutations. Seeding
the initial structure simply added more structural components to the
genome, making it even harder for NEAT to learn to play the game.

Another benefit that HyperNEAT has over NEAT is its ability to
harness the geometry of the game space due to its indirect encod-
ing. This geometric awareness HyperNEAT networks have makes
it easier for said networks to learn the relative risks and benefits of
having blocks and holes located in different regions of the board. For
example, it only takes a few small mutations of a CPPN to encode a
preference against having blocks exist in higher y-coordinates.

However, the usefulness of indirect encoding decreases when
using the hand-designed features. Initially, the geometric awareness
HyperNEAT encodes gave its networks an advantage. However, after
a few hundred generations, HyperNEAT networks hit a consistent
fitness ceiling while NEAT networks began to excel. This stagna-
tion seems to be due in part to the limited usefulness of geometric
information within these features: knowing the geometric layout
of column heights might help a little, but simply favoring states in
which all of these values are low is probably useful enough in most
cases. Additionally, the column difference features actually already
provide a bit of highly localized geometric information, making
HyperNEAT’s geometric awareness somewhat redundant. The fixed
topology imposed by the HyperNEAT substrate may also contribute
to the stagnation, since it prevents the growth of interesting hidden
structures, and forces the CPPN to find a way to use a particular
organization of hidden neurons (or to learn to ignore them).

In contrast, NEAT can directly interpret these hand-designed fea-
tures fairly easily because there are so few of them. Lacking a means
of interpreting these features in a regular way across the horizontal
dimension seems to have made learning slow early on, but as mu-
tations in disparate parts of the genome happened to coincidentally
complement each other, and gradual complexification of the genome
allowed it to refine its feature processing in more nuanced ways, per-
formance continued to rise. In fact, the learning curve for the NEAT
runs still seems to be moving upward at the end of 500 generations.

The results of experiments with hand-designed features showed
that HyperNEAT was more successful at first, with NEAT overtaking
its performance in later generations. This phenomenon indicates

southwestern.edu/~schrum2/SCOPE/tetris.html
southwestern.edu/~schrum2/SCOPE/tetris.html
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that Tetris is a prime candidate in which to apply the Hybridized
Indirect and Direct encoding (HybrID [9]) algorithm, which is a
hybrid between HyperNEAT and NEAT. How HybrID works is that
substrate networks are evolved with HyperNEAT for a set number of
generations, and once this cutoff is reached, the CPPNs generating
these networks are discarded, and further evolution occurs using
only direct encodings of the generated substrate networks. HybrID
can capitalize on the strengths of both HyperNEAT and NEAT.

Another direction for future work in Tetris is to apply Deep Rein-
forcement Learning using raw screen inputs. There has been much
research done with other reinforcement learning methods in Tetris,
but no published work using Deep Reinforcement Learning yet ex-
ists. Recent successes in Atari [17] and Go [22] indicate that Tetris
is also a prime candidate for this approach.

7 CONCLUSION
Tetris is a well-known and popular domain that has been thoroughly
studied by the AI community. However, this previous research had
not focused on neuroevolution approaches or on the use of raw
screen inputs. Two neuroevolution algorithms, NEAT and Hyper-
NEAT, were compared to see how directly and indirectly encoded
networks using both raw and hand-designed inputs would perform
in this complicated domain. Overall, HyperNEAT was superior to
NEAT when using raw features, thanks in part to the geometric
awareness indirect encodings afford. However, NEAT ultimately
produced more high scoring champions when using hand-designed
features. Overall, these results indicate that despite past successes
with HyperNEAT, more improvements are needed in order for it
to perform better in an absolute sense when using raw visual in-
formation, and better with respect to standard NEAT when using
hand-designed features. Further exploration of approaches such as
HybrID, that combine the strengths of both NEAT and HyperNEAT,
is interesting future work.
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